Skip to main content

Publications

Publications

2019, 2020, 2021, 2022 Highly Cited Researcher by Web of Science

Google Scholar Profile: https://scholar.google.com/citations?user=wa7Jnb0AAAAJ&hl=en

180 Musa, E. N., Yadav, A. K., Smith, K. T., Jung, M. S., Stickle, W. F., Eschbach, P., Ji, X., Stylianou* K. C. “Boosting Photocatalytic Hydrogen Production by MOF-Derived Metal Oxide Heterojunctions with a 10.0% Apparent Quantum YieldAngewandte Chemie International Edition (2024) doi.org/10.1002/anie.202405681

179 Jung, M. S., Hoang, D., Sui, Y., Ji*, X. “Impact of Air Exposure on the Performance of the MnO2 Cathode in Aqueous Zn BatteriesACS Energy Letters (2024) 9, 4316-4318 https://doi.org/10.1021/acsenergylett.4c01612

178 Luo, L. W., Zhang,* C., Ma, W., Han, C., Ai, X., Chen, Y., Xu, Y., Ji,* X. Jiang* J. X. “Regulating the Double‐Way Traffic of Cations and Anions in Ambipolar Polymer Cathodes for High‐Performing Aluminum Dual‐Ion BatteriesAdvanced Materials (2024) https://doi.org/10.1002/adma.202406106

177 Yu, M., Li, B., Wang, J., Xu, Y., Zhang, N., Jung, M. S., Xue, Z., Cho, Y., Kim, M. J., Feng, G., Yang, Y., Scida, A., Sui, Y., Zhuo, Z., Lu, M. Yadav, A. K., Stylianou, K. C., Yang, W., Liu, Y., Wang, C., Osborn Popp, T., Wang*, C., Liu*, T., Zheng*, X., Jiang*, D., Ji,* X. “Unlocking Li2CO3-Li2SO4 as Cathodes for Li-ion BatteriesChemRxiv (2024) 10.26434/chemrxiv-2024-732b5

176 Yu, M., Wang, J., Lei, M., Jung, M. S., Zhuo, Z., Yang, Y., Zheng, X., Sandstrom, S., Wang, C., Yang*, W., Jiang*, D., Liu*, T., Ji*, X. “Unlocking Iron Metal as a Cathode for Sustainable Li-ion Batteries by an Anion Solid-SolutionScience Advances (2024) https://www.science.org/doi/10.1126/sciadv.adn4441

175 Sui, Y., Scida, A. M., Li, B., Chen, C., Fu, Y., Fang, Y., Greaney, P. A., Osborn Popp, T. M., Jiang*, D., Fang,* C. Ji*, X. “The Influence of Ions on the Electrochemical Stability of Aqueous ElectrolytesAngewandte Chemie International Edition (2024) https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202401555

174 Ji,* X. and Nazar, L. F. “Best Practices for Zinc Metal Batteries Nature Sustainability (2024) https://doi.org/10.1038/s41893-023-01257-8

173 Wang, W., Zhang,* L., Duan, Z., Li, R., Zhao, J., Tang, L., Sui, Y., Qi, Y., Han, S., Fang, C., Wang,* D. and Ji,* X. “Joint Cationic and Anionic Redox Chemistry in a Vanadium-Oxide Cathode for Zinc Batteries Achieving High Energy DensityCarbon Energy (2023) Accepted.

172 Huang, X., Ma, W., Tang, L., Hu, L., Chen, Y., Zhang,* C., Ji,* X., and Jiang,* J.-X. “A Conjugated Poly(p-phenylene) Anode with Na-Solvent Co-Insertion Enables High-Rate and Low-Temperature Na-Ion BatteriesChemical Engineering Journal (2023) https://www.sciencedirect.com/science/article/pii/S1385894723060369.

171 Li, A., Man, Y., Liao, J., Duan, L., Ji,* X., Zhou,* X. “KI-Assisted Formation of Spindle-Like Prussian White Nanoparticles for High-Performance Potassium-Ion Battery CathodesNano Letters, (2023) https://doi.org/10.1021/acs.nanolett.3c03558.

170 Sandstrom, S. K., Li, Q., Sui, Y., Lyons, M., Chang, C.-W., Zhang, R., Jiang, H., Yu, M., Hoang, D., Stickle, W. F., Xin,* H. L., Feng,* Z., Jiang,* D. and Ji,* X. “Reversible Cl/ClRedox in a Spinel Mn3O4 ElectrodeChemical Science, (2023) DOI: 10.1039/D3SC04545E.

169 Sui, Y., Ji,* X. “Electrolyte Interphases in Aqueous BatteriesAngewandte Chemie International Edition (2023) https://doi.org/10.1002/anie.202312585

168 Hoang, D., Li, Y., Jung, M. S., Sandstrom, S. K., Scida, A. M., Jiang, H., Gallagher, T. C., Pollard, B. A., Jensen, R., Chiu, N.-C., Stylianou, K., Stickle, W. F., Greaney,* P. A. and Ji,* X. “Vanillin: An Effective Additive to Improve the Longevity of Zn Metal Anode in a 30 m ZnCl2 ElectrolyteAdvanced Energy Materials, (2023) https://doi.org/10.1002/aenm.202301712

167 Sui, Y., Zhuo, Z., Lei, M., Wang, L., Yu, M., Scida, A. M., Sandstrom, S. K., Stickle, W., O’Larey, T. D., Jiang,* D., Yang,* W., and Ji,* X., “Li2MnO3: A Catalyst for a Liquid Cl2 Electrode in Low-Temperature Aqueous BatteriesAdvanced Materials, (2023), https://doi.org/10.1002/adma.202302595

166 Marcos Lucero, Davis B Armitage, Xin Yang, Sean K Sandstrom, Mason Lyons, Ryan C Davis, George E Sterbinsky, Namhyung Kim, David M Reed, Xiulei Ji, Xiaolin Li, Zhenxing Feng “Ball Milling-Enabled Fe2.4+ to Fe3+ Redox Reaction in Prussian Blue Materials for Long-Life Aqueous Sodium-Ion BatteriesACS Appl. Mater. Interfaces 15, (2023), 36366–36372 https://doi.org/10.1021/acsami.3c07304

165 Tang, L., Xu, Y., Zhang, W., Sui, Y., Scida, A., Tachibana, S. R., Garaga, M., Sandstrom, S. K., Chiu, N.-C., Stylianou, K. C., Greenbaum, S. G., Greaney,* P. A., Fang,* C., Ji,* X. “Strengthening Aqueous Electrolytes without Strengthening WaterAngewandte Chemie International Edition (2023), https://doi.org/10.1002/anie.202307212

164 Huang, Z., Li, X., Chen, Z., Li, P., Ji,* X., Zhi,* C. “Anion chemistry in energy storage devicesNature Chemistry Reviews (2023), https://www.nature.com/articles/s41570-023-00506-w

163 Jiang, H., Tang, L., Fu, Y., Wang, S., Sandstrom, S. K., Scida, A. M., Li, G-X., Hoang, D., Hong, J. J., Chiu, N-C., Stylianou, K. C., Stickle, W. F., Wang, D., Li, J., Greaney,* P. A., Fang,* C., Ji,* X. “Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency” Nature Sustainability (2023), https://doi.org/10.1038/s41893-023-01092-x

162 Yu, M. and Ji,* X. “Transition metal-ion mediated sulfur redox chemistry for aqueous batteries” National Science Review (2023), https://doi.org/10.1093/nsr/nwad021

161 Sui, Y., Lei, M., Yu, M., Scida, A., Sandstrom, S. K., Stickle, W., O’Larey, T. D., Jiang*, D. and Ji* X. “Reversible Cl2/Cl redox for low-temperature aqueous batteries” ACS Energy Letters, (2023), https://doi.org/10.1021/acsenergylett.2c02757

160 Sandstrom, S. and Ji,* X. “Reversible Halogen Cathodes for High Energy Lithium Batteries” Joule (2023), https://doi.org/10.1016/j.joule.2022.12.016

159 Xu, Y., Ding, T., Sun, D., Ji,* X. and Zhou* X. “Recent Advances in Electrolytes for Potassium-Ion Batteries” Advanced Functional Materials (2022), https://doi.org/10.1002/adfm.202211290

158 Yu, M., Sui, Y., Sandstrom, S. K., Wu, C.-Y., Yang, H., Stickle, W., Luo,* W., Ji,* X. “Reversible Copper Cathode for Nonaqueous Dual-Ion BatteriesAngewandte Chemie International Edition 132, (2022), https://doi.org/10.1002/anie.202212191

157 Park, K., Kim, D.-M., Ha, K.-H., Kwon, B., Lee, J., Jo, S., Ji, X., Lee, K. T. “Correlation between Redox Potential and Solvation Structure in Biphasic Electrolytes for Li Metal BatteriesAdvanced Science 9, (2022), 2203443 https://doi.org/10.1002/advs.202203443

156 Gallagher, T. C., Sandstrom, S. K., Wu, C.-Y., Stickle, W., Fulkerson, C. R., Hagglund, L., Ji*, X. “Copper Metal Electrode Reversibly Hosts Fluoride in a 16 m KF Aqueous ElectrolyteChemical Communications 58, (2022), 10218-10220 https://pubs.rsc.org/en/content/articlelanding/2022/cc/d2cc02978b

155 Sandstrom, K. S. Ji, X. “Unlocking the Longevity of the Iron Metal AnodeACS Central Science 8, (2022), 686-688 https://doi.org/10.1021/acscentsci.2c00542

154 Gallagher, T. C., Wu, Che-Yu, Lucero, M., Sandstrom, S. K., Hagglund, L., Jiang, H., Stickle, W., Feng,* Z. and Ji*, X. “From Copper to Basic Copper Carbonate: A Reversible Conversion Cathode in Aqueous Anion BatteriesAngewandte Chemie International Edition 132, (2022), e202203837 https://doi.org/10.1002/anie.202203837

153 Surta*, T. W., Koh, E., Li, Z., Fast, D., Ji, X., Greaney* P. A. and Dolgos* M. R. “Combining experimental and theoretical techniques to gain an atomic level understanding of the defect binding mechanism in hard carbon anodes for sodium ion batteriesAdvanced Energy Materials 12, (2022), 2200647 https://doi.org/10.1002/aenm.202200647

152 Wang, S., Jiang, H., Dong, Y., Clarkson, D., Settens, C. M., Ren, Y., Nguyen, T., Han, F., Fan, W., Kim, S. Y., Zhang, J., Xue, W., Xu, G., Sandstrom, S. K., Li, M., Deng, S., Greenbaum, S. G., Ji,* X., Gao,* T., Li,* J. “Acid-in-clay Electrolyte for Wide-temperature-range and Long-cycle Proton BatteriesAdvanced Materials 34, (2022), 2202063 https://doi.org/10.1002/adma.202202063

151 Shin, W., Garcia, J. C., Vu, A., Ji, X., Iddir*, H., Dogan*, F. “Understanding Lithium Local Environments in LiMn0.5Ni0.5O2 Cathodes: A DFT-Supported 6Li Solid-State NMR StudyJournal of Physical Chemistry C 126, (2022), 4276-4285 https://doi.org/10.1021/acs.jpcc.1c10470

150 Kim, K., Tang, L., Mirabedini, P., Yokoi, A., Muratli, J. M., Guo, Q., Lerner, M. M., Gotoh*, K., Greaney*, P. A., Fang*, C., Ji*, X. [LiCl2]- Superhalide: A New Charge Carrier for Graphite Cathode of Dual-Ion Batteries Advanced Functional Materials 32, (2022), 2112709 https://doi.org/10.1002/adfm.202112709

149 Sui, Y., Yu, M., Xu, Y., Ji*, X. “Low-Temperature Aqueous Batteries: Challenges and OpportunitiesJournal of the Electrochemical Society 169, (2022) 030537 https://iopscience.iop.org/article/10.1149/1945-7111/ac53cd/meta

148 Kim, K., Tang, L., Muratli, J. M., Fang, C., Ji*, X. “A Graphite || PTCDI Aqueous Dual-ion BatteryChemSusChem 15, (2022), e202102394 https://doi.org/10.1002/cssc.202102394

147 Huo, H., Huang, K., Luo,* W., Meng, J., Zhou, L., Deng, Z., Wen, J., Dai, Y., Huang, Z., Shen,* Y., Guo, X., Ji, X., Huang,* Y. “Evaluating Interfacial Stability in Solid-State Pouch Cells via Ultrasonic ImagingACE Energy Letters 7, (2022), 650-658 https://doi.org/10.1021/acsenergylett.1c02363

146 Ji, X. “A Perspective of ZnCl2 Electrolytes: the Physical and Electrochemical PropertieseScience 1, (2021), 99-107 https://doi.org/10.1016/j.esci.2021.10.004

145 Wu, X., Qiu, S., Liu, Y., Xu, Y., Jiang, Z., Yang, J., Ji,* X., Liu,* J. “The Quest for Stable Potassium-Ion Battery ChemistryAdvanced Materials 34, (2021) 2106876 https://doi.org/10.1002/adma.202106876

144 Mohammadnezhad, F., Kampouri, S., Wolff, S. K., Xu, Y., Feyzi, M., Lee, J.-H., Ji, X., Stylianou, K. C. “Tuning the Optoelectronic Properties of Hybrid Functionalized MIL-125-NH2 for Photocatalytic Hydrogen EvolutionACS Appl Mater Interfaces 13, (2021), 5044-5051. https://doi.org/10.1021/acsami.0c19345

143 Xu, Y., Wu, X., Sandstrom, S. K., Hong, J. J., Jiang, H., Chen, X., Ji* X. “Iron-Ion Bolted VOPO4∙2H2O as an Aqueous Fe-ion Battery ElectrodeAdvanced Materials(2021) 2105234 https://doi.org/10.1002/adma.202105234

142 Jiang*, J.-X., Luo, L.-W., Zhang, C., Wu, X., Han, C., Xu, Y., Ji*, Xiulei “A Zn-S Aqueous Primary Battery with High Energy and Flat Discharge Plateau Chemical Communications 57, (2021): 9918-9921 https://doi.org/10.1039/D1CC04337D

141 Sandstrom, S., Jiang, H., Lucero, M., Xu, Y., Gallagher, T. C., Cao, M., Feng*, Z., Ji*, X. “Reversible Electrochemical Conversion from Selenium to Cuprous SelenideChemical Communications (2021) https://doi.org/10.1039/D1CC03983K

140 Kang, H. J., Park, J. W., Hwang, H. J., Kim, H., Jang, K.-S., Ji, X., Kim, H. J., Im, W. B., Jun, Y. S., “Electrocatalytic and Stoichiometric Reactivity of 2D Layered Siloxene for High-Energy-Dense Lithium-Sulfur Batteries” Carbon Energy(2021) https://doi.org/10.1002/cey2.152

139 Sui, Y., Ji,* X. “Anticatalytic Strategies to Suppress Water Electrolysis in Aqueous BatteriesChemical Reviews 121, (2021): 6654–6695https://doi.org/10.1021/acs.chemrev.1c00191

138 Sandstrom, S., Chen, Ji,* X. “A Review of Halide Charge Carriers for Rocking-Chair and Dual-Ion BatteriesCarbon Energy3,(2021): 627-653https://doi.org/10.1002/cey2.110

137 Liu, Q., Wang, Y., Yang, Xu., Zhou D., Wang, X., Jaumaux, P., Kang, F., Li,* B., Ji,* X., Wang,* G. “Rechargeable Anion-Shuttle Batteries for Low-Cost Energy StorageChem (2021) Accepted. https://doi.org/10.1016/j.chempr.2021.02.004

136 Guo, Q., Kim, K.-I., Li, S., Scida, A. M., Yu, P., Sandstrom, K. S., Zhang, L., Sun, S., Jiang, H., Ni, Q., Yu, D., Lerner, M., Xia, H. Ji, X. “Reversible Insertion of I-Cl Interhalogen in Graphite Cathode for Aqueous Dual-Ion BatteriesACS Energy Letters, 6, (2021): 469-467 https://doi.org/10.1021/acsenergylett.0c02575

135 Mohammadnezhad, F., Kampouri, S., Wolff, S., Xu, Y., Feyzi, M., Lee, J.-H., Ji, X., Stylianou,* K. “Tuning the Optoelectronic Properties of Hybrid Functionalized MIL-125-NH2 for Photocatalytic Hydrogen EvolutionACS Appl. Mater. Inter. 13, (2021): 5044-5051 https://doi.org/10.1021/acsami.0c19345

134 Xu, Y., Wu, X., Ji, X. “The Renaissance of Proton BatteriesSmall Structures, (2021) https://onlinelibrary.wiley.com/doi/pdf/10.1002/sstr.202000113

133 Ma, J.; Li, Y.; Grundish, N.; Goodenough, J.; Chen, Y.; Guo, L.; Peng, Z.; Qi, X.; Yang, F.; Qie, L.; Wang, C.; Huang, B.; Huang, Z.; Chen, L.; Su, D.; Wang, G.; Peng, X.; Chen, Z.; Yang, J.; He, S.; Zhang, X.; Yu, H.; Fu, C.; Jiang, M.; Deng, W.; Sun, C.; Pan, Q.; Tang, Y.; Li, X.; Ji, X.; Wang, F.; Niu, Z.; Lian, F.; Wang, C.; Wallace, G.; Fan, M.; Meng, Q.; Xin, S.; Guo, Y.-G.; Wan, L. “The 2020 Battery Technology RoadmapJournal of Physics D: Applied Physics 54, (2021): 183001 https://iopscience.iop.org/article/10.1088/1361-6463/abd353/pdf

132 Zhang, C. Ma, W., Han, C., Luo, L.-W., Daniyar, A., Xiang, S., Wu, X., Ji,* X. and Jiang*, J.-X. “Tailoring the Linking Patterns of Polypyrene Cathodes for High-Performance Aqueous Zn Dual-Ion BatteriesEnergy & Environmental Sciences 14, (2021): 462-272 https://doi.org/10.1039/D0EE03356A

131 Qiu, S., Xu, Y., Li, X., Sandstrom, S. K. Wu*, X., Ji*, X. “Reinforced Potassium and Ammonium Storage of the Polyimide anode in Acetate-Based Water-in-Salt ElectrolytesElectrochemistry Communications (2021) https://doi.org/10.1016/j.elecom.2020.106880

130 Qiu, S., Xu, Y., Wu*, X., Ji*, X. “Prussian Blue Analogues as Electrodes for Aqueous Monovalent Ion BatteriesElectrochemical Energy Reviews (2020) 10.1007/s41918-020-00088-x

129 Liang, G., Mo F., Ji*, X., Zhi*, C. “Non-metallic charge carriers for aqueous batteriesNature Reviews Materials 6, (2020): 109-123 https://doi.org/10.1038/s41578-020-00241-4

128 Xu, Y., Wu, X., Jiang, H., Tang, L., Koga, K. Y., Fang, C., Lu*, J., Ji*, X. “A Non-aqueous Proton Electrolyte Enables Stable Cycling of Proton Electrodes” Angewandte Chemie International Edition 132, (2020): 22191-22195 https://doi.org/10.1002/ange.202010554

127 Kim, K., Guo, Q., Tang, L., Zhu, L., Pan, C., Chang, C., Razink, J., Lerner, M. M., Fang*, C., Ji*, X. “Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion battery” Angewandte Chemie International Edition 59, (2020): 19924-19928 https://doi.org/10.1002/anie.202009172

126 Zhang, C., Shin, W., Zhu, L., Chen, C., Neuefeind,J. C., Xu,Y., Allec,S. I., Liu,C., Wei,Z., Daniyar, A.,Jiang,J.-X., Fang, C., Greaney,P. A., Ji,X. “The Electrolyte Comprising More Robust Water and Superhalides Transforms Zn-Metal Anode Reversible and Dendrite-Free” Carbon Energy 3, (2020): 339-248 https://doi.org/10.1002/cey2.70

125 Shin, W., Zhu, L., Jiang, H., Stickle, W. F., Fang, C., Liu, C., Lu*, J., and Ji*, X. “Fluorinated Co-solvent Promises Li-S Batteries Under Lean Electrolyte Conditions” Materials Today 40, (2020): 63-71 https://doi.org/10.1016/j.mattod.2020.06.007

124 Yao,* Y. Yu, L., Wang, M., Dai, A., Zhang, Y., Guo, Q., Lin, Y., Wen, J., Wu, F., Ji, X., and Lu* J. “Burning Magnesium in Carbon Dioxide for Highly Effective Phosphate Removal” Carbon Energy 3, (2020): 330-337 https://doi.org/10.1002/cey2.62

123 Xing, Z., Tan, G., Yuan, Y., Wang, B., Ma, L., Xie, J., Li, Z., Wu, T., Ren, Y., Shahbazian-Yassar, R., Lu*, J., Ji*, X., Chen*, Z. “Consolidating Lithiothermic-Ready Transition Metals for Li2S-Based CathodesAdvanced Materials 32, (2020): 2002403 https://doi.org/10.1002/adma.202002403

122 Guo, Q.,Kim, K.,Jiang, H., Zhang, L., Zhang, C., Yu, D., Ni, Q., Chang, X., Chen, T., Xia*, H., Ji*, X.“A High-Potential Anion-Insertion Carbon Cathode for Aqueous Zinc Dual-Ion BatteryAdvanced Functional Materials (2020) https://doi.org/10.1002/adfm.202002825

121 Jiang, H. Shin, W., Ma, L., Hong, J. J., Wei, Z., Liu, Y., Zhang, S., Wu, X., Xu, Y., Guo, Q., Subramanian, M. A., Stickle, W. F., Wu, T., Lu*, J., Ji*, X. “A High-Rate Aqueous Proton Battery Delivering Power below -78 oC via an Unfrozen Phosphoric Acid” Advanced Energy Materials (2020) 2000968 https://doi.org/10.1002/aenm.202000968

120 Ni, Q., Jiang, H., Sandstrom, S., Bai*, Y., Ren, H., Wu, X., Guo, Q., Yu, D., Wu*, C., Ji*, X. “A Na3V2(PO4)2O1.6F1.4Cathode of Zn-Ion Battery Enabled by a Water-in-Bisalt Electrolyte” Advanced Functional Materials (2020) https://doi.org/10.1002/adfm.202003511

119 Dong, Y., Zhang, Q., Tian, Z., Li, B., Yan, W., Wang, S., Jiang K., Ge, R., Oloman, C., Gyenge, E., Lu, Z., Su, J., Ji, X., Chen,* L. “Ammonia Thermal Treatment toward Topological Defects in Porous Carbon for Enhanced Carbon Dioxide ElectroreductionAdvanced Materials (2020) https://doi.org/10.1002/adma.202001300

118 Jiang, H., Ji,* X. “Counter-Ion Insertion of Chloride in Mn3O4 as Cathode for Dual-Ion Batteries: A New Mechanism of Electrosynthesis for Reversible Anion StorageCarbon Energy (2020) https://doi.org/10.1002/cey2.37

117. Wu, X., Qiu, S., Xu, Y., Ma, L., Yuan, Y., Wu, T., Shahbazian-Yassar, R., Lu,* J., Ji, X.* “Hydrous Nickel-Iron Turnbull's Blue as a High-Rate and Low-Temperature Proton Electrode.” ACS Applied Materials & Interfaces 12 (2020): 9201-9208 https://doi.org/10.1021/acsami.9b20320

116. Ji,* X., Jiang, H. “A Perspective: The Technical Barriers of Zn Metal BatteriesChemical Research in Chinese Universities36,(2020) 55-60 https://link.springer.com/article/10.1007/s40242-020-9092-7

115. Li, M., Lu,* J., Ji, X., Li, Y., Shao, Y., Chen, Z., Zhong,* C., and Amine K "Design strategies for nonaqueous multivalent and monovalent ion battery anodes" Nature Reviews Materials 5, (2020): 276-294 https://www.nature.com/articles/s41578-019-0166-4

114. Ismael A. Rodríguez-Pérez,* Lu Zhang, Daniel P. Leonard, and Xiulei Ji* “Aqueous Anion Insertion into a Hydrocarbon Cathode via a Water-in-Salt Electrolyte” Electrochemistry Communications109,(2019): 106599 https://doi.org/10.1016/j.elecom.2019.106599

113. Shin, W., Lu, J., Ji*, X. “ZnS Coating of Cathode Facilitates Lean-Electrolyte Li-S BatteriesCarbon Energy 1, (2019): 165-172 https://doi.org/10.1002/cey2.10

112. Ji, X. “A Paradigm of Storage BatteriesEnergy & Environmental Sciences 12, (2019): 3203-3224 10.1039/C9EE02356A

111. Hong J. J., Zhu, L., Chen, C., Tang, L., Jiang, H., Jin, B., Gallagher, T. C., Guo, Q., Fang*, C., Ji*, X. “Dual Plating Battery via the Iodine/[ZnIx(OH2)4-x]2-x CathodeAngewandte Chemie International Edition 131, (2019): 16057-16062 https://doi.org/10.1002/ange.201909324

110. Wu, X., Markir, A., Xu, Y., Hu, E. C., Dai, K. T., Zhang, C., Shin, W., Leonard, D. P., Kim, K-I, and Ji*, X.,“Rechargeable Iron-Sulfur Battery without Polysulfide Shuttling” Advanced Energy Materials 9, (2019): 1902422https://doi.org/10.1002/aenm.201902422

109. Wu, X., Ji* X. “Aqueous Batteries Get Energetic” Nature Chemistry 11, (2019), 680-681 https://www.nature.com/articles/s41557-019-0300-3.pdf

108. Wu, X., Markir, A., Ma, L., Xu, Y., Jiang, H., Leonard, D. P., Shin, W., Wu, T., Lu,* J., and Ji* X. “A Four‐Electron Sulfur Electrode Hosting Cu2+/Cu+ Redox Charge CarrierAngewandte Chemie International Edition 58, (2019): 12640-12645. doi:10.1002/anie.201905875

107. Wei, Z., Shin, W., Jiang, H., Wu, X., Stickle, W. F., Chen, G., Lu*, J., Greaney*, P. A., Du*, F., Ji* X. “Reversible Intercalation of Methyl Viologen as a Dicationic Charge Carrier in Aqueous BatteriesNature Communications 10, (2019) 3227, https://www.nature.com/articles/s41467-019-11218-5

106. Li, Zhifei, Shin, Woochul, Chen, Yicong, Neuefeind, Joerg C.,Greaney,* P. Alex and Ji,* Xiulei “Low Temperature Pyrolyzed Soft Carbon as High Capacity K-Ion AnodeACS Applied Energy Materials 2, (2019): 4053-4058 doi:org/10.1021/acsaem.9b00125

105. Zhang, L. Rodríguez-Pérez,I. A. Jiang, H., Zhang, C.,Leonard,D. P., Guo, Q., Wang, W.,Han*, S., Wang*, L., and Ji* X. ZnCl2 “Water-in-Salt” Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode” Advanced Functional Materials 190, (2019): 1902653doi:org/10.1002/adfm.201902653

104. Wu,X., Xu,Y., Zhang, C., Leonard, D. P., Markir, A. (undergraduate) Lu,* J., Ji,* X. “Reverse Dual-Ion Battery via a ZnCl2 Water-in-Salt Electrolyte Journal of the American Chemical Society 141 (2019): 6338-6344 doi: 10.1021/jacs.9b00617

103. Dong, S., Shin, W., Jiang, H., Wu, X., Li, Z., Holoubek, J. (undergraduate), Stickle, W. F., Key, B., Liu, C., Lu,* J., Greaney,* P. A., Zhang,* X., and Ji* X. “Ultra-Fast NH4+-Storage: Strong H-Bonding between NH4+ and Bilayered V2O5Chem 5, (2019): 1537-1551 doi:org/10.1016/j.chempr.2019.03.009

102. Zhou, X., Liu, Q., Jiang, C., Ji, B., Ji,* X., Tang,* Y., and Cheng,* H.-M. “Beyond Conventional Batteries: Strategies towards Low‐Cost Dual‐Ion Batteries with High PerformanceAngewandte Chemie International Edition 59, (2019): 3802-3832 doi: 10.1002/anie.201814294

101. Wu, X., Markir, A. (undergraduate), Xu, Y., Zhang, C., Leonard, D. P., Shin, W., Ji* X., “A Rechargeable Battery with Iron Metal Anode” Advanced Functional Materials 29, (2019): 1900911 doi.org/10.1002/adfm.201900911

100. Jiang, H., Wei, Z., Ma, L. Yuan, Y., Hong, J. J., Wu, X., Leonard, D. P., Holoubek, J. (undergraduate), Razink, J. J., Stickle, W. F., Du, F., Wu, T., Lu,* J., Ji* X. “An Aqueous Dual-Ion Battery Cathode of Mn3O4 via Reversible Insertion of NitrateAngewandte Chemie International Edition 58, (2019): 5286-5291 doi: 10.1002/anie.201814646

99. Shin, W., So, K. P., Stickle, W. F., Su, C., Lu, J., Li,* J. Ji,* X. “Ethyl Methyl Sulfone Co-Solvent Eliminates Macroscopic Morphological Instabilities of Lithium Metal AnodeChemical Communications 55, (2019), 3387-3389 doi: 10.1039/x0xx00000x

98. Wu, X., Hong, J. J., Shin, W., Ma, L., Liu, T., Bi, X., Yuan, Y., Qi, Y. (undergraduate), Surta, T., Huang, W., Neuefeind, J., Wu, T., Greaney*, P. A., Lu*, J., and Ji* X., “Diffusion-Free Grotthuss Topochemistry for High-rate and Long-Life Proton Batteries" Nature Energy, 4, (2019), 123-130 doi: 10.1038/s41560-018-0309-7

97. Bommier, C., Ji, X., and Greaney*, P. A. “Electrochemical Properties and Theoretical Capacity for Sodium Storage in Hard Carbon: Insights from First Principles CalculationsChemistry of Materials, 31 (2018), 658-677 doi: 10.1021/acs.chemmater.8b01390

96. Rodríguez-Pérez, I., Bommier, C., Fuller, D., Leonard, D., Williams, A., Ji*, X. “Towards Higher Capacities of Hydrocarbon Cathodes in Dual-Ion Batteries" ACS Applied Materials and Interfaces 10, (2018): 43311-43315 doi: 10.1021/acsami.8b17105

95. Zhang, C., Holoubek, J. (undergraduate), Wu, X., Daniyar, A. (undergraduate), Zhu, L., Chen, C., Leonard, D. P., Rodríguez-Pérez, I. A., Jiang*, J.-X. Jiang*, C., Ji*, X, “A ZnCl2 Water-in-Salt Electrolyte for a Reversible Zn Metal Anode.” Chemical Communications 54, (2018): 14097-14099 doi: 10.1039/c8cc07730d

94. Jiang, H., Hong, J., Wu, X., Surta, T.; Qi, Y. (undergraduate), Dong, S., Li, Z., Leonard, D., Holoubek, J. (undergraduate), Wong, J. (undergraduate), Razink, J., Zhang, X., Ji,* X. “Insights on the Proton Insertion Mechanism in the Electrode of Hexagonal Tungsten Oxide HydrateJournal of the American Chemical Society 140, (2018): 11556-11559 doi: 10.1021/jacs.8b03959

93. Holoubek, J.J., Jiang, H., Leonard, D., Qi, Y., Bustamante, G. C., Ji*, X., “Amorphous Titanic Acid Electrode: Its Electrochemical Storage of Ammonium in a New Water-in-Salt ElectrolyteChemical Communications 54, (2018): 9805-9808. doi: 10.1039/C8CC04713H

92. Leonard, D., Stickle, W., Ji*, X., “Carbon-Supported Iron Phosphides: Highest Intrinsic Oxygen Evolution Activity of the Iron TriadACS Applied Energy Materials 1, (2018): 3593-3597. doi: 10.1021/acsaem.8b00861

91. Wu, X.,Xu,Y., Jiang, H., Wei, Z., Hong, J. J., Hernandez, A. S. (Undergraduate),Du, F.,Ji*, X., “NH4+ Topotactic Insertion in Berlin Green: An Exceptionally Long-Cycling Cathode in Aqueous Ammonium-Ion Batteries.ACS Applied Energy Materials 1, (2018), 3077-3083. doi: 10.1021/acsaem.8b00789

90. Li, Z., Chen, Y (Undergraduate), Jian, Z., Jiang, H., Razink, J., Stickle, W., Neuefeind, J., Ji*, X “Defective Hard Carbon Anode for Na-ion BatteriesChemistry of Materials 30, (2018): 4536–4542, doi: 10.1021/acs.chemmater.8b00645

89. Evanko, B., Seung Joon Yoo,* S. J., Lipton, J., Chun, S-E, Moskovits, M., Ji, X., Boettcher* S. W., Stucky, G. D. “Stackable Bipolar Pouch Cells with Corrosion-Resistant Current Collectors Enable High-Power Aqueous Electrochemical Energy StorageEnergy & Environmental Science, 11, (2018): 2865-2875 doi:10.1039/C8EE00546J

88. Zhang, H., Li, Z., Xu, W., Chen, Y., Ji, X., Lerner*, M. “Pillared Graphite Anodes for Reversible SodiationNanotechnology 29, (2018): 325402. http://iopscience.iop.org/article/10.1088/1361-6528/aac69a

87. Gao, N., Qu, B., Xing, Z., Ji, X., Zhang, E., Liu*, H. “Development of Novel Polyethylene Air-Cathode Material for Microbial Fuel CellsEnergy 155, (2018): 765-773. https://doi.org/10.1016/j.energy.2018.05.055

86. Bommier, C., Mitlin*, D., Ji*, X. “Internal Structure-Na Storage Mechanisms-Electrochemical Performance Relations in CarbonsProgress in Materials Science 97, (2018): 170-203. https://doi.org/10.1016/j.pmatsci.2018.04.006

85. Dong, S., Li, Z., Xing, Z., Wu, X., Ji*, X., Zhang*, X. “A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K2Ti6O13 Micro-ScaffoldsACS Applied Materials and Interfaces 10, (2018): 15542–15547 doi: 10.1021/acsami.7b15314

84. Xing, Z., Lu*, J., Ji*, X. “A Brief Review of Metallothermic Reduction Reactions for Materials PreparationSmall Methods (2018): 1800062 https://doi.org/10.1002/smtd.201800062

83. Leonard, D., Wei, Z., Chen, G., Du*, F., Ji*, X. “A Water-in-Salt Electrolyte for Potassium-Ion BatteriesACS Energy Letters, 3, (2018): 373–374. doi: 10.1021/acsenergylett.8b00009

82. Deng, Y.*, Dong, S., Li, Z., Jiang, H., Zhang*, X., and Ji*, X. “Applications of Conventional Vibrational Spectroscopic Methods for Batteries Beyond Li-IonSmall Methods 2, (2018): 1700332. https://doi.org/10.1002/smtd.201700332

81. Bommier*, C. and Ji*, X. “Electrolytes, SEI Formation, and Binders: A Review of Non-Electrode Factors for Sodium-Ion Battery AnodesSmall 14, (2018): 1703576. an invited review. doi: 10.1002/smll.201703576

80. Wu, X., Qi, Y. (Undergraduate), Hong, J. J., Hernandez, A. S. (Undergraduate) Ji*, X. “Rocking-Chair NH4-Ion Battery: A Highly Reversible Aqueous Energy Storage SystemAngewandte Chemie International Edition 56, (2017):13026-13030 doi: 10.1002/anie.201707473

79. Rodríguez-Pérez, I. A. Yuan, Y., Bommier, C., Wang, X., Ma, L., Leonard, D. P., Lerner, M. M., Carter, R. G., Wu*, T., Greaney*, P. A., Lu*, J., and Ji*, X. “The Squeezed Herringbone Structure of an Organic Solid When Hosting Mg-Ions ElectrochemicallyJournal of the American Chemical Society 139, (2017) 13031-13037 doi: 10.1021/jacs.7b06313

78. Dong, S., Li, Z., Rodriguez-Perez, I. A., Jiang, H., Lu*, J., Zhang*, X., Ji*, X “A Novel Coronene//Na2Ti3O7 Dual Ion BatteryNano Energy 40, (2017)233-239https://doi.org/10.1016/j.nanoen.2017.08.022

77. Xing, Z., Qi, Y. (Undergraduate), Tian, Z., Xu, J., Yuan, Y., Bommier, C., Lu*, J., Tong*, W., Jiang*, D., Ji*. X. “Identify the Removable Substructure in Carbon ActivationChemistry of Materials 29, (2017): 7288-7295 doi: 10.1021/acs.chemmater.7b01937

76. Rodríguez-Pérez, I., Ji*, X. “Anion Hosting Cathode in Dual-Ion BatteriesACS Energy Letters 2,(2017): 1762-1770 doi: 10.1021/acsenergylett.7b00321 an invited perspective

75. Yoo. S. J., Evanko, B., Wang, X. Romelczyk, M., Ji, X., Boettcher*, S., Stucky*, G. “Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical CapacitorJournal of the American Chemical Scoiety 139, (2017): 9985-9993 doi:10.1021/jacs.7b04603

74. Dong, S., Li, H., Wang, J., Zhang*, X., Ji*, X. “Improved Flexible Li-ion Capacitors: Techniques for Superior StabilityNano Research 10, (2017): 4448-4456 https://link.springer.com/article/10.1007/s12274-017-1753-6

73. Wu, X., Leonard, D., Ji*, X. “Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and OpportunitiesChemistry of Materials, 29, (2017): 5031-5042 doi: 10.1021/acs.chemmater.7b01764 an invited perspective

72. Tan, G., Xu, R. Xing. Z., Yuan, Y., Lu*, J., Wen, J., Liu, C., Ma, L., Zhan, C., Liu, Q., Wu, T., Jian, Z., Shahbazian-Yassar, R., Yang, R., Miller, D. J., Curtiss, L. A., Ji*, X., Amine*, K., “Burning” Lithium in CS2: Compact Li2S@Graphene Nanocapsules for Li-S BatteriesNature Energy (2017) 17090 doi:10.1038/nenergy.2017.90

71. Li, Z., Bommier, C., Chong, Z. S., Jian, Z., Surta T. W., Wang, X., Xing, Z., Neuefeind, J. C., Stickle, W. F., Dolgos*, M., Greaney*, P. A., and Ji*, X., “Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom DopingAdvanced Energy Materials (2017): 1602894 doi: 10.1002/aenm.201602894

70. Jian, Z., Hwang, S., Li, Z., Hernandez, A. S., Wang, X., Xing, Z., Su*, D., Ji*, X. “Hard-Soft Composite Carbon as a Long-Cycling and High-Rate Anode for Potassium-Ion BatteriesAdvanced Functional Materials (2017): 1700324 doi: 10.1002/adfm.201700324

69. Jian, Z., Bommier, C., Xing, Z., Li, Z., Wang*, C., Greaney*, P. A., Ji*, X. “Insights on the Mechanism of Na-Ion Storage in Soft CarbonChemistry of Materials 29, (2017):2314-2320 doi: 10.1021/acs.chemmater.6b05474

68. Wu, X., Jian, Z., Li, Z., Ji*, X. “Prussian White Analogues as Promising Cathode for Non-Aqueous Potassium-Ion Batteries” Electrochemistry Communications 77, (2017): 54-57 https://doi.org/10.1016/j.elecom.2017.02.012

67. Li, Z., Jian, Z., Wang, X., Rodríguez-Pérez, I. A., Bommier, C., Ji*, X. “Hard Carbon Anode of Sodium-Ion Batteries: Undervalued Rate Capability” Chemical Communications 53, (2017): 2610-2613 doi: 10.1039/c7cc00301c

66. Wang, X., Bommier, C., Jian, Z., Li, Z., Chandrabose, R. S., Rodríguez Pérez, I., Ji*, X. “Hydronium-Ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode” Angew. Chem. Int. Ed. 56,(2017): 2909-2913 doi:10.1002/ange.201700148

65. Zhu, H., Shen, F., Luo, W., Zhu, S., Zhao, M., Natarajan, B., Dai, J., Zhou, L., Ji, X., Yassar, R. S., Li, T., Hu*, L. “Low Temperature Carbonization of Cellulose Nanocrystals for High Performance Carbon Anode of Sodium-Ion BatteriesNano Energy 33, (2017): 37-44 http://dx.doi.org/10.1016/j.nanoen.2017.01.021

64. Xing, Z., Gao, N., Qi, Y., Ji*, X., Liu*, H. “Influence of Enhanced Carbon Crystallinity of Nanoporous Graphite on the Cathode Performance of Microbial Fuel CellsCarbon 115, (2017):271-278 http://dx.doi.org/10.1016/j.carbon.2017.01.014

63. Jian, Z., Hu, Y., Ji*, X., Chen*, W. “NASICON Structure Materials for Energy StorageAdvanced Materials 29, (2017): 1601925 doi: 10.1002/adma.201601925

62. Eftekhari*, A., Jiang, Z., Ji*, X. “Secondary Potassium Batteries” ACS Applied Materials and Interfaces9, no. 5, (2017): 4404-4419 doi:10.1021/acsami.6b07989

61. Xing, Z., Qi, Y., Jian, Z., Ji*, X. “Polynanocrystalline Graphite: A New Carbon Anode with Superior Cycling Performance for K-ion Batteries.ACS Applied Materials and Interfaces 9, no.5, (2017): 4343–4351 doi: 10.1021/acsami.6b06767

60. Rodríguez-Perez, I. A. Jian, Z., Waldenmaier, P. K., Palmisano, J. W., Chandrabose, R. S., Wang, X., Lerner, M. M., Carter*, R. G., and Ji*, X. “A Hydrocarbon Cathode for Dual-Ion BatteriesACS Energy Letters 1, (2016):719-723 doi: 10.1021/acsenergylett.6b00300

59. Bommier, C., Leonard, D., Jian, Z., Stickle, W. F., Greaney, P. A., Ji*, X. “New Paradigms on the Nature of Solid Electrolyte Interphase Formation and Capacity Fading of Hard Carbon Anodes in NIBsAdvanced Materials Interfaces 3, no. 19, (2016):1600449 doi:10.1002/admi.201600449

58. Jiang, Z., Liang, Y. Rodríguez Pérez, I., Yao*, Y. Ji*, X. “Poly(anthraquinonyl sulfide) Cathode for Potassium-ion Batteries” Electrochemistry Communications71,(2016): 5-8. doi.org/10.1016/j.elecom.2016.07.011

57. Evanko, B., Yoo, S., Chun, S-E, Wang, X., Ji, X., Boettcher*, S., Stucky*, G. “Efficient Charge Storage in Dual-redox electrochemical capacitors through reversible counterion-induced solid complexationJournal of American Chemical Society 138, (2016):9373-9376 doi: 10.1021/jacs.6b05038

56. Li, Z., Lu, M., Surta, T., Jian, Z., Bommier, C., Xing, Z., Dolgos, M., Amine, K., Lu*, J., Wu*, T., Ji*, X. “Unlock High Capacity of Hard Carbon Anodes in Na-ion Batteries by Increasing Structural Defects via DopingPOx Clusters” ACS Energy Letters 1, (2016): 395-401. doi: 10.1021/acsenergylett.6b00172

55. Wang, X., Chandrabose, R. S., Jian, Z., Xing, Z., Ji*, X. “A 1.8 V Aqueous Supercapacitor with a Bipolar Assembly of Ion-Exchange Membranes as the SeparatorJournal of the Electrochemical Society 163, (2016): A1853-A1858. doi: 10.1149/2.0311609jes

54. Xing, Z., Luo, X., Qi, Y. (undergraduate), Stickle, W. F., Lu*, J., Ji*, X. “Nitrogen-Doped Nanoporous Graphenic Carbon: An Efficient Conducting Support for O2 CathodeChemNanoMat 2, (2016): 692-697. doi: 10.1002/cnma.201600112

53. Cheng, Y. Shao*, Y., Raju, V., Ji, X., Mehdi, B. L., Han, K. S., Engelhard, M. H., Li, G., Browning, N. D., Mueller, K. T., Liu*, J. “Molecular Storage of Mg Ions with Vanadium Oxide NanoclustersAdvanced Functional Materials 26, no. 20 (2016): 3446-3453. doi: 10.1002/adfm.201505501

52. Luo, W., Shen, F., Bommier, C., Zhu, H., Ji*, X., Hu*, L. “Na-Ion Battery Anodes: Materials and Electrochemistry” Accounts of Chemical Research49, no. 2, (2016), 231-240 doi: 10.1021/acs.accounts.5b00482

51. Li, B., Zhang, Y., Ma, D., Xing, Z., Ma, T., Shi, Z. , Ji, X., Ma*, S. “Creation of a New Type of Ion Exchange Materials for Rapid, High-Capacity, Reversible and Selective Ion Exchange without Swelling and EntrainmentChemical Science 7,(2016): 2138-2144doi: 10.1039/C5SC04507J

50. Li, X., Yan, P., Arey, B., Luo, W., Ji, X., Wang, C.-M., Liu, J., Zhang, J.-G. “A Stable Nanoporous Silicon Anode Prepared by Modified Magnesiothermic Reactions" Nano Energy 20, (2016): 68-75 doi:10.1016/j.nanoen.2015.12.011

49. Xing, Z., Jian, Z., Luo, W. Qi, Y., Chong, E. S., Li, Z., Bommier, C. Hu*, L., Ji*, X. “A Perylene Anhydride Crystal as a Reversible Electrode for K-Ion Batteries” Energy Storage Materials 2, (2016): 63-68 doi:10.1016/j.ensm.2015.12.001

48. Deng, Y., Xie, Y., Zou, K., Ji*, X., “Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors” Journal of Materials Chemistry A 4, (2016): 1144-1173, doi: 10.1039/C5TA08620E

47. Luo, W., Jian, Z., Xing, Z., Wang, W., Bommier, C., Lerner, M. M. and Ji*, X. “Electrochemically Expandable Soft Carbon as Anodes for Na-ion Batteries” ACS Central Science 1, (2015): 516-512 doi: 10.1021/acscentsci.5b00329

46. Jian, Z., Xing, Z., Bommier, C., Li, Z., Ji*, X. “Hard Carbon Micro-Spheres: Potassium-Ion Anode Versus Sodium-Ion Anode Advanced Energy Materials 6, no. 3, (2015): 1501874 doi: 10.1002/aenm.201501874

45. Zeng, H., Liu, D., Zhang, Y., See, K., Jun, Y.-S., Wu, G., Gerbec, J., Ji, X., Stucky, G. “Nanostructured, Mn-doped V2O5 Cathode Material Fabricated from Layered Vanadium Jarosite" Chemistry of Materials 27, no. 21, (2015): 7331-7336 doi: 10.1021/acs.chemmater.5b02840

44. Jian, Z., Luo, W., Ji*, X. “Carbon Electrodes for K-ion Batteries” Journal of the American Chemical Society 137, no.36, (2015): 11566–11569, doi:10.1021/jacs.5b06809

43. Wang, X., Chandrabose, R. S., Chun, S.-E., Zhang, T., Evanko, B., Boettcher, S. W., Stucky, G. D., Ji*, X. “High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH ElectrolyteACS Applied Materials & Interfaces 7, no. 36 (2015): 19978-19985. doi: 10.1021/acsami.5b04677

42. Bommier, C., Surta, T. W., Dolgos, M. and Ji*, X. “New Mechanistic Insights on Na-ion Storage in Non-graphitizable CarbonNano Letters 15, no. 9, (2015): 5888-5892. doi: 10.1021/acs.nanolett.5b01969

41. Jian, Z., Raju, V, Li, Z., Xing, Z., Hu*, Y.-S., Ji*, X. “A High-Power Symmetric Na-Ion PseudocapacitorAdvanced Functional Materials 25, (2015): 5778-5785. doi: 10.1002/adfm.201502433

40. Chun, S-E., Evanko, B., Wang, X., Vonlanthen, D., Ji, X., Stucky, G. D., and Boettcher*, S. W. “Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-dischargeNature Communications 6, (2015): doi:10.1038/ncomms8818

39. Bommier, C., Xu, R., Wang, W., Wang, X., Wen, D. (High School Student), Lu, J., and Ji*, X. “Self-Activation of Cellulose: A New Preparation Methodology for Activated Carbon Electrodes in Electrochemical CapacitorsNano Energy 13, (2015): 709-717 doi:10.1016/j.nanoen.2015.03.022,

38. Chen, C., Wen, Y., Hu*, X., Ji, X., Yan, M., Mai, L., Hu, P., Shan, B., and Huang*, Y. “Na+ Intercalation Pseudocapacitance in Graphene-Coupled Titanium Oxide Enabling Ultra-Fast Sodium Storage and Long-Term CyclingNature Communications 6, (2015): doi:10.1038/ncomms7929

37. Jian, Z., Sun, Y., and Ji*, X. “A New Low-Voltage Plateau of Na3V2(PO4)3 as an Anode for Na-Ion BatteriesChemical Communications 51, no. 29 (2015): 6381–6383. doi:10.1039/C5CC00944H

36. Luo, W., Bommier, C., Jian, Z., Li, X., Carter, R., Vail, S., Lu, Y., Lee, J.-J., and Ji*, X. “Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration AgentACS Applied Materials & Interfaces 7, no. 4 (2015): 2626–2631. doi:10.1021/am507679x

35. Xing, Z., Wang, B., Halsted, J. K. (Undergraduate), Subashchandrabose, R., Stickle, W. F., and Ji*, X. “Direct Fabrication of Nanoporous Graphene from Graphene Oxide by Adding a Gasification Agent to a Magnesiothermic ReactionChemical Communications 51, no. 10 (2015): 1969–1971. doi:10.1039/C4CC08977D

34. Xing, Z., Wang, B., Gao, W., Pan, C., Halsted, J. K.(Undergraduate), Chong, E. S. (undergraduate), Lu, J., Wang, X., Luo, W., Chang, C.-H., Wen, Y., Ma, S., Amine*, K., and Ji*, X. “Reducing CO2 to Dense Nanoporous Graphene by Mg/Zn for High Power Electrochemical CapacitorsNano Energy 11, (2015): 600–610. doi:10.1016/j.nanoen.2014.11.011

33. Bommier, C. and Ji*, X. “Recent Development on Anodes for Na-Ion BatteriesIsrael Journal of Chemistry 55, no. 5 (2015): 486–507. doi:10.1002/ijch.201400118 an Invited Review Article

32. Raju, V., Rains, J. (undergraduate), Gates, C. (undergraduate), Luo, W., Wang, X., Stickle, W. F., Stucky, G. D., and Ji*, X. “Superior Cathode of Sodium-Ion Batteries: Orthorhombic V2O5 Nanoparticles Generated in Nanoporous Carbon by Ambient Hydrolysis DepositionNano Letters 14, no. 7 (2014): 4119–4124. doi:10.1021/nl501692p

31. Luo, W., Allen, M. (undergraduate), Raju, V., and Ji*, X. “An Organic Pigment as a High-Performance Cathode for Sodium-Ion BatteriesAdvanced Energy Materials 4, no. 15 (2014): 1400554–1400558. doi:10.1002/aenm.201400554

30. Wang, B., Maciá-Agulló, J. A., Prendiville, D. G., Zheng, X., Liu, D., Zhang, Y., Boettcher, S. W., Ji*, X., and Stucky*, G. D. “A Hybrid Redox-Supercapacitor System with Anionic Catholyte and Cationic AnolyteJournal of The Electrochemical Society 161, no. 6 (2014): A1090–A1093. doi:10.1149/2.058406jes

29. Bommier, C., Luo, W., Gao, W.-Y., Greaney, A., Ma, S., and Ji*, X. “Predicting Capacity of Hard Carbon Anodes in Sodium-Ion Batteries Using Porosity MeasurementsCarbon 76, (2014): 165–174. doi:10.1016/j.carbon.2014.04.064

28. Ji, X., He, G., Andrei, C., and Nazar*, L. F. “Gentle Reduction of SBA-15 Silica to Its Silicon Replica with Retention of MorphologyRSC Advances 4, no. 42 (2014): 22048. doi:10.1039/c3ra46557h

27. Luo, W., Wang, B., Heron, C. G. (undergraduate), Allen, M. J. (undergraduate), Morre, J., Maier, C. S., Stickle, W. F., and Ji*, X. “Pyrolysis of Cellulose under Ammonia Leads to Nitrogen-Doped Nanoporous Carbon Generated through Methane FormationNano Letters 14, no. 4 (2014): 2225–2229. doi:10.1021/nl500859p

26. Luo, W., Lorger, S., Wang, B., Bommier, C., and Ji*, X. “Facile Synthesis of One-Dimensional Peapod-like Sb@C Submicron-StructuresChemical Communications 50, no. 41 (2014): 5435. doi:10.1039/c4cc01326c

25. Raju, V., Wang, X., Luo, W., and Ji*, X. “Multiple Ambient Hydrolysis Deposition of Tin Oxide into Nanoporous Carbon To Give a Stable Anode for Lithium-Ion BatteriesChemistry – A European Journal 20, no. 25 (2014): 7686–7691. doi:10.1002/chem.201402280

24. Wang, X., Raju, V., Luo, W., Wang, B., Stickle, W. F., and Ji*, X. “Ambient Hydrolysis Deposition of TiO2 in Nanoporous Carbon and the Converted TiN–carbon Capacitive ElectrodeJournal of Materials Chemistry A 2, no. 9 (2014): 2901. doi:10.1039/c3ta14278g

23. Luo, W., Wang, B., Wang, X., Stickle, W. F., and Ji*, X. “Production of Graphene by Reduction Using a Magnesiothermic ReactionChemical Communications 49, no. 91 (2013): 10676. doi:10.1039/c3cc46368k

22. Luo, W., Wang, X., Meyers, C., Wannenmacher, N., Sirisaksoontorn, W., Lerner, M. M., and Ji*, X. “Efficient Fabrication of Nanoporous Si and Si/Ge Enabled by a Heat Scavenger in Magnesiothermic ReactionsScientific Reports 3, (2013): doi:10.1038/srep02222

21. Luo, W., Schardt, J., Bommier, C., Wang, B., Razink, J., Simonsen, J., and Ji*, X. “Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-Life Anode Material for Rechargeable Sodium-Ion BatteriesJournal of Materials Chemistry A 1, no. 36 (2013): 10662. doi:10.1039/c3ta12389h

20. Snedaker, M. L., Zhang, Y., Birkel, C. S., Wang, H., Day, T., Shi, Y., Ji, X., Kraemer, S., Mills, C. E., Moosazadeh, A., Moskovits, M., Snyder, G. J., and Stucky*, G. D. “Silicon-Based Thermoelectrics Made from a Boron-Doped Silicon Dioxide NanocompositeChemistry of Materials 25, no. 24 (2013): 4867–4873. doi:10.1021/cm401990c

19. Liu, X., Shen, Y., Yang, R., Zou, S., Ji, X., Shi, L., Zhang, Y., Liu, D., Xiao, L., Zheng, X., Li, S., Fan, J., and Stucky*, G. D. “Inkjet Printing Assisted Synthesis of Multicomponent Mesoporous Metal Oxides for Ultrafast Catalyst ExplorationNano Letters 12, no. 11 (2012): 5733–5739. doi:10.1021/nl302992q

18. Lee, J., Mubeen, S., Ji, X., Stucky, G. D., and Moskovits*, M. “Plasmonic Photoanodes for Solar Water Splitting with Visible LightNano Letters 12, no. 9 (2012): 5014–5019. doi:10.1021/nl302796f

17. Choi, N.-S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y.-K., Amine, K., Yushin, G., Nazar, L. F., Cho, J., and Bruce*, P. G. “Challenges Facing Lithium Batteries and Electrical Double-Layer CapacitorsAngewandte Chemie International Edition 51, no. 40 (2012): 9994–10024. doi:10.1002/anie.201201429

16. Zhang, Y., Day, T., Snedaker, M. L., Wang, H., Krämer, S., Birkel, C. S., Ji, X., Liu, D., Snyder, G. J., and Stucky*, G. D. “A Mesoporous Anisotropic N-Type Bi2Te3 Monolith with Low Thermal Conductivity as an Efficient Thermoelectric MaterialAdvanced Materials 24, no. 37 (2012): 5065–5070. doi:10.1002/adma.201201974

15. Lee, K. T., Black, R., Yim, T., Ji, X., and Nazar*, L. F. “Surface-Initiated Growth of Thin Oxide Coatings for Li–Sulfur Battery CathodesAdvanced Energy Materials 2, no. 12 (2012): 1490–1496. doi:10.1002/aenm.201200006

14. Ji, X., Liu, D.-Y., Prendiville, D. G., Zhang, Y., Liu, X., and Stucky*, G. D. “Spatially Heterogeneous Carbon-Fiber Papers as Surface Dendrite-Free Current Collectors for Lithium DepositionNano Today 7, no. 1 (2012): 10–20. doi:10.1016/j.nantod.2011.11.002

13. Zhang, Y., Snedaker, M. L., Birkel, C. S., Mubeen, S., Ji, X., Shi, Y., Liu, D., Liu, X., Moskovits, M., and Stucky*, G. D. “Silver-Based Intermetallic Heterostructures in Sb2Te3 Thick Films with Enhanced Thermoelectric Power FactorsNano Letters 12, no. 2 (2012): 1075–1080. doi:10.1021/nl204346g

12. He, G., Ji, X., and Nazar*, L. “High ‘C’ Rate Li-S Cathodes: Sulfur Imbibed Bimodal Porous CarbonsEnergy & Environmental Science 4, no. 8 (2011): 2878. doi:10.1039/c1ee01219c

11. Ji, X., Evers, S., Black, R., and Nazar*, L. F. “Stabilizing Lithium–sulphur Cathodes Using Polysulphide ReservoirsNature Communications 2, (2011): 325. doi:10.1038/ncomms1293

10. Ji, X. and Nazar*, L. F. “Advances in Li–S BatteriesJournal of Materials Chemistry 20, no. 44 (2010): 9821. doi:10.1039/b925751a

9. Ji, X., Lee, K. T., Holden, R., Zhang, L., Zhang, J., Botton, G. A., Couillard, M., and Nazar*, L. F. “Nanocrystalline Intermetallics on Mesoporous Carbon for Direct Formic Acid Fuel Cell AnodesNature Chemistry 2, no. 4 (2010): 286–293. doi:10.1038/nchem.553

8. Ji, X., Evers, S., Lee, K. T., and Nazar*, L. F. “Agitation Induced Loading of Sulfur into Carbon CMK-3 Nanotubes: Efficient Scavenging of Noble Metals from Aqueous SolutionChemical Communications 46, no. 10 (2010): 1658. doi:10.1039/b918442b

7. Ji, X., Lee, K. T., and Nazar*, L. F. “A Highly Ordered Nanostructured Carbon–sulphur Cathode for Lithium–sulphur BatteriesNature Materials 8, no. 6 (2009): 500–506. doi:10.1038/nmat2460

6. Lee, K. T., Ji, X., Rault, M., and Nazar*, L. F. “Simple Synthesis of Graphitic Ordered Mesoporous Carbon Materials by a Solid-State Method Using Metal PhthalocyaninesAngewandte Chemie International Edition 48, no. 31 (2009): 5661–5665. doi:10.1002/anie.200806208

5. Ji, X., Lee, K. T., Monjauze, M., and Nazar*, L. F. “Strategic Synthesis of SBA-15 NanorodsChemical Communications no. 36 (2008): 4288–4290. doi:10.1039/B804327B

4. Ji, X., Herle, P. S., Rho, Y., and Nazar*, L. F. “Carbon/MoO2 Composite Based on Porous Semi-Graphitized Nanorod Assemblies from In Situ Reaction of Tri-Block PolymersChemistry of Materials 19, no. 3 (2007): 374–383. doi:10.1021/cm060961y

3. Zhang, H., Wang, C., Li, M., Ji, X., Zhang, J., and Yang*, B. “Fluorescent Nanocrystal−Polymer Composites from Aqueous Nanocrystals:  Methods without Ligand ExchangeChemistry of Materials 17, no. 19 (2005): 4783–4788. doi:10.1021/cm050260l

2. Zhang, H., Cui, Z., Wang, Y., Zhang, K., Ji, X., Lü, C., Yang*, B., and Gao, M. “From Water-Soluble CdTe Nanocrystals to Fluorescent Nanocrystal–Polymer Transparent Composites Using Polymerizable SurfactantsAdvanced Materials 15, no. 10 (2003): 777–780. doi:10.1002/adma.200304521

1. Zhang, H., Lu, G., Ji, X., Li, Z., and Yang*, B. “Encapsulating of Aqueous CdTe Nanocrystals into Polymerizable SurfactantsChemical Research in Chinese Universities 24, no. 1 (2002): 178–180.

BOOK CHAPTER

1. Bommier, C., and Ji*, X. "Nanoporous Carbon for Capacitive Energy Storage. “Mesoporous Materials For Advanced Energy Storage and Conversion Technologies” Science Publishers An Imprint of CRC Press/Taylor & Francis group. ISBN 9781498747998 - CAT# K27073